Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
1.
Anaesthesia ; 79(2): 156-167, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37921438

ABSTRACT

It is unclear if cardiopulmonary resuscitation is an aerosol-generating procedure and whether this poses a risk of airborne disease transmission to healthcare workers and bystanders. Use of airborne transmission precautions during cardiopulmonary resuscitation may confer rescuer protection but risks patient harm due to delays in commencing treatment. To quantify the risk of respiratory aerosol generation during cardiopulmonary resuscitation in humans, we conducted an aerosol monitoring study during out-of-hospital cardiac arrests. Exhaled aerosol was recorded using an optical particle sizer spectrometer connected to the breathing system. Aerosol produced during resuscitation was compared with that produced by control participants under general anaesthesia ventilated with an equivalent respiratory pattern to cardiopulmonary resuscitation. A porcine cardiac arrest model was used to determine the independent contributions of ventilatory breaths, chest compressions and external cardiac defibrillation to aerosol generation. Time-series analysis of participants with cardiac arrest (n = 18) demonstrated a repeating waveform of respiratory aerosol that mapped to specific components of resuscitation. Very high peak aerosol concentrations were generated during ventilation of participants with cardiac arrest with median (IQR [range]) 17,926 (5546-59,209 [1523-242,648]) particles.l-1 , which were 24-fold greater than in control participants under general anaesthesia (744 (309-2106 [23-9099]) particles.l-1 , p < 0.001, n = 16). A substantial rise in aerosol also occurred with cardiac defibrillation and chest compressions. In a complimentary porcine model of cardiac arrest, aerosol recordings showed a strikingly similar profile to the human data. Time-averaged aerosol concentrations during ventilation were approximately 270-fold higher than before cardiac arrest (19,410 (2307-41,017 [104-136,025]) vs. 72 (41-136 [23-268]) particles.l-1 , p = 0.008). The porcine model also confirmed that both defibrillation and chest compressions generate high concentrations of aerosol independent of, but synergistic with, ventilation. In conclusion, multiple components of cardiopulmonary resuscitation generate high concentrations of respiratory aerosol. We recommend that airborne transmission precautions are warranted in the setting of high-risk pathogens, until the airway is secured with an airway device and breathing system with a filter.


Subject(s)
Cardiopulmonary Resuscitation , Out-of-Hospital Cardiac Arrest , Humans , Animals , Swine , Cardiopulmonary Resuscitation/methods , Out-of-Hospital Cardiac Arrest/therapy , Heart , Respiration , Exhalation
2.
Anaesthesia ; 78(5): 587-597, 2023 05.
Article in English | MEDLINE | ID: mdl-36710390

ABSTRACT

Aerosol-generating procedures are medical interventions considered high risk for transmission of airborne pathogens. Tracheal intubation of anaesthetised patients is not high risk for aerosol generation; however, patients often perform respiratory manoeuvres during awake tracheal intubation which may generate aerosol. To assess the risk, we undertook aerosol monitoring during a series of awake tracheal intubations and nasendoscopies in healthy participants. Sampling was undertaken within an ultraclean operating theatre. Procedures were performed and received by 12 anaesthetic trainees. The upper airway was topically anaesthetised with lidocaine and participants were not sedated. An optical particle sizer continuously sampled aerosol. Passage of the bronchoscope through the vocal cords generated similar peak median (IQR [range]) aerosol concentrations to coughing, 1020 (645-1245 [120-48,948]) vs. 1460 (390-2506 [40-12,280]) particles.l-1 respectively, p = 0.266. Coughs evoked when lidocaine was sprayed on the vocal cords generated 91,700 (41,907-166,774 [390-557,817]) particles.l-1 which was significantly greater than volitional coughs (p < 0.001). For 38 nasendoscopies in 12 participants, the aerosol concentrations were relatively low, 180 (120-525 [0-9552]) particles.l-1 , however, five nasendoscopies generated peak aerosol concentrations greater than a volitional cough. Awake tracheal intubation and nasendoscopy can generate high concentrations of respiratory aerosol. Specific risks are associated with lidocaine spray of the larynx, instrumentation of the vocal cords, procedural coughing and deep breaths. Given the proximity of practitioners to patient-generated aerosol, airborne infection control precautions are appropriate when undertaking awake upper airway endoscopy (including awake tracheal intubation, nasendoscopy and bronchoscopy) if respirable pathogens cannot be confidently excluded.


Subject(s)
Cough , Wakefulness , Humans , Cough/etiology , Respiratory Aerosols and Droplets , Intubation, Intratracheal/methods , Lidocaine
3.
J Phys Chem A ; 126(17): 2619-2631, 2022 May 05.
Article in English | MEDLINE | ID: mdl-35467353

ABSTRACT

New approaches for the sensitive and accurate quantification of aerosol optical properties are needed to improve the current understanding of the unique physical chemistry of airborne particles and to explore their roles in fields as diverse as chemical manufacturing, healthcare, and atmospheric science. We have pioneered the use of cavity ring-down spectroscopy (CRDS), with concurrent angularly resolved elastic light scattering measurements, to interrogate the optical properties of single aerosol particles levitated in optical and electrodynamic traps. This approach enables the robust quantification of optical properties such as extinction cross sections for individual particles of known size. Our measurements can now distinguish the scattering and absorption contributions to the overall light extinction, from which the real and imaginary components of the complex refractive indices can be retrieved and linked to chemical composition. In this Feature Article, we show that this innovative measurement platform enables accurate and precise optical measurements for spherical and nonspherical particles, whether nonabsorbing or absorbing at the CRDS probe wavelength. We discuss the current limitations of our approach and the key challenges in physical and atmospheric chemistry that can now be addressed by CRDS measurements for single aerosol particles levitated in controlled environments.

4.
J Hosp Infect ; 124: 13-21, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35276282

ABSTRACT

BACKGROUND: Open respiratory suctioning is defined as an aerosol generating procedure (AGP). Laryngopharyngeal suctioning, used to clear secretions during anaesthesia, is widely managed as an AGP. However, it is uncertain whether upper airway suctioning should be designated as an AGP due to the lack of both aerosol and epidemiological evidence. AIM: To assess the relative risk of aerosol generation by upper airway suctioning during tracheal intubation and extubation in anaesthetized patients. METHODS: This prospective environmental monitoring study was undertaken in an ultraclean operating theatre setting to assay aerosol concentrations during intubation and extubation sequences, including upper airway suctioning, for patients undergoing surgery (N=19). An optical particle sizer (particle size 0.3-10 µm) sampled aerosol 20 cm above the patient's mouth. Baseline recordings (background, tidal breathing and volitional coughs) were followed by intravenous induction of anaesthesia with neuromuscular blockade. Four periods of laryngopharyngeal suctioning were performed with a Yankauer sucker: pre-laryngoscopy, post-intubation, pre-extubation and post-extubation. FINDINGS: Aerosol was reliably detected {median 65 [interquartile range (IQR) 39-259] particles/L} above background [median 4.8 (IQR 1-7) particles/L, P<0.0001] when sampling in close proximity to the patient's mouth during tidal breathing. Upper airway suctioning was associated with a much lower average aerosol concentration than breathing [median 6.0 (IQR 0-12) particles/L, P=0.0007], and was indistinguishable from background (P>0.99). Peak aerosol concentrations recorded during suctioning [median 45 (IQR 30-75) particles/L] were much lower than during volitional coughs [median 1520 (IQR 600-4363) particles/L, P<0.0001] and tidal breathing [median 540 (IQR 300-1826) particles/L, P<0.0001]. CONCLUSION: Upper airway suctioning during airway management was not associated with a higher aerosol concentration compared with background, and was associated with a much lower aerosol concentration compared with breathing and coughing. Upper airway suctioning should not be designated as a high-risk AGP.


Subject(s)
Airway Extubation , Cough , Aerosols , Airway Extubation/methods , Humans , Intubation, Intratracheal , Prospective Studies
5.
Anaesthesia ; 77(1): 22-27, 2022 01.
Article in English | MEDLINE | ID: mdl-34700360

ABSTRACT

Manual facemask ventilation, a core component of elective and emergency airway management, is classified as an aerosol-generating procedure. This designation is based on one epidemiological study suggesting an association between facemask ventilation and transmission during the SARS-CoV-1 outbreak in 2003. There is no direct evidence to indicate whether facemask ventilation is a high-risk procedure for aerosol generation. We conducted aerosol monitoring during routine facemask ventilation and facemask ventilation with an intentionally generated leak in anaesthetised patients. Recordings were made in ultraclean operating theatres and compared against the aerosol generated by tidal breathing and cough manoeuvres. Respiratory aerosol from tidal breathing in 11 patients was reliably detected above the very low background particle concentrations with median [IQR (range)] particle counts of 191 (77-486 [4-1313]) and 2 (1-5 [0-13]) particles.l-1 , respectively, p = 0.002. The median (IQR [range]) aerosol concentration detected during facemask ventilation without a leak (3 (0-9 [0-43]) particles.l-1 ) and with an intentional leak (11 (7-26 [1-62]) particles.l-1 ) was 64-fold (p = 0.001) and 17-fold (p = 0.002) lower than that of tidal breathing, respectively. Median (IQR [range]) peak particle concentration during facemask ventilation both without a leak (60 (0-60 [0-120]) particles.l-1 ) and with a leak (120 (60-180 [60-480]) particles.l-1 ) were 20-fold (p = 0.002) and 10-fold (0.001) lower than a cough (1260 (800-3242 [100-3682]) particles.l-1 ), respectively. This study demonstrates that facemask ventilation, even when performed with an intentional leak, does not generate high levels of bioaerosol. On the basis of this evidence, we argue facemask ventilation should not be considered an aerosol-generating procedure.


Subject(s)
Masks , Respiratory Aerosols and Droplets/chemistry , Adult , Aged , Cough/etiology , Female , Humans , Male , Middle Aged , Severe acute respiratory syndrome-related coronavirus/isolation & purification , Severe Acute Respiratory Syndrome/pathology , Severe Acute Respiratory Syndrome/virology
6.
Phys Chem Chem Phys ; 23(34): 18568-18579, 2021 Sep 14.
Article in English | MEDLINE | ID: mdl-34612393

ABSTRACT

A refined technique for observing the complete evaporation behaviour of free-falling droplets, from droplet generation to complete solvent evaporation, with ultra-high time resolution is introduced and benchmarked. High-resolution phase-delay stroboscopic imaging is employed to simultaneously resolve the evolving droplet morphology, geometric and aerodynamic diameters, throughout the evaporative lifetime with a user-controlled < µs timescale. This allows rapid, complex morphological changes, such as crystallisation events, to be clearly observed and the corresponding mechanisms to be inferred. The dried particles are sampled for offline SEM analysis and the observed morphologies compared to the inflight imaging. Density changes can be calculated directly from the deviation between the geometric and aerodynamic diameters. The full capabilities of the new technique are demonstrated by examination of the different evaporation behaviours and crystallisation mechanisms for aqueous sodium chloride droplets evaporating under different ambient relative humidity (RH) conditions. The crystallisation window, defined as the time taken from initial to complete crystallisation, is shown to be RH dependent, extending from 0.03 s at 20% RH and 0.13 s at 40% RH. The different crystallisation mechanisms observed during the experiments are also clearly reflected in the final structure of the dry particles, with multi-crystal structures produced at low RH compared to single-crystal structures at higher RH. It is anticipated that this technique will unlock measurements which explore the evaporation behaviour and crystallisation mechanisms for rapid, complex droplet drying events, and with increasingly non-ideal solutions, relevant to industrial applications.

7.
Sci Rep ; 11(1): 19451, 2021 09 30.
Article in English | MEDLINE | ID: mdl-34593916

ABSTRACT

Assessing the body condition of wild animals is necessary to monitor the health of the population and is critical to defining a framework for conservation actions. Body condition indices (BCIs) are a non-invasive and relatively simple means to assess the health of individual animals, useful for addressing a wide variety of ecological, behavioral, and management questions. The Antillean manatee (Trichechus manatus manatus) is an endangered subspecies of the West Indian manatee, facing a wide variety of threats from mostly human-related origins. Our objective was to define specific BCIs for the subspecies that, coupled with additional health, genetic and demographic information, can be valuable to guide management decisions. Biometric measurements of 380 wild Antillean manatees captured in seven different locations within their range of distribution were obtained. From this information, we developed three BCIs (BCI1 = UG/SL, BCI2 = W/SL3, BCI3 = W/(SL*UG2)). Linear models and two-way ANCOVA tests showed significant differences of the BCIs among sexes and locations. Although our three BCIs are suitable for Antillean manatees, BCI1 is more practical as it does not require information about weight, which can be a metric logistically difficult to collect under particular circumstances. BCI1 was significantly different among environments, revealing that the phenotypic plasticity of the subspecies have originated at least two ecotypes-coastal marine and riverine-of Antillean manatees.


Subject(s)
Body Size , Ecotype , Trichechus manatus/anatomy & histology , Animals , Biometry , Female , Male
8.
Anaesthesia ; 76(12): 1577-1584, 2021 12.
Article in English | MEDLINE | ID: mdl-34287820

ABSTRACT

Many guidelines consider supraglottic airway use to be an aerosol-generating procedure. This status requires increased levels of personal protective equipment, fallow time between cases and results in reduced operating theatre efficiency. Aerosol generation has never been quantitated during supraglottic airway use. To address this evidence gap, we conducted real-time aerosol monitoring (0.3-10-µm diameter) in ultraclean operating theatres during supraglottic airway insertion and removal. This showed very low background particle concentrations (median (IQR [range]) 1.6 (0-3.1 [0-4.0]) particles.l-1 ) against which the patient's tidal breathing produced a higher concentration of aerosol (4.0 (1.3-11.0 [0-44]) particles.l-1 , p = 0.048). The average aerosol concentration detected during supraglottic airway insertion (1.3 (1.0-4.2 [0-6.2]) particles.l-1 , n = 11), and removal (2.1 (0-17.5 [0-26.2]) particles.l-1 , n = 12) was no different to tidal breathing (p = 0.31 and p = 0.84, respectively). Comparison of supraglottic airway insertion and removal with a volitional cough (104 (66-169 [33-326]), n = 27), demonstrated that supraglottic airway insertion/removal sequences produced <4% of the aerosol compared with a single cough (p < 0.001). A transient aerosol increase was recorded during one complicated supraglottic airway insertion (which initially failed to provide a patent airway). Detailed analysis of this event showed an atypical particle size distribution and we subsequently identified multiple sources of non-respiratory aerosols that may be produced during airway management and can be considered as artefacts. These findings demonstrate supraglottic airway insertion/removal generates no more bio-aerosol than breathing and far less than a cough. This should inform the design of infection prevention strategies for anaesthetists and operating theatre staff caring for patients managed with supraglottic airways.


Subject(s)
Airway Extubation/standards , Environmental Monitoring/standards , Intubation, Intratracheal/standards , Operating Rooms/standards , Particle Size , Supraglottitis/therapy , Airway Extubation/methods , Airway Management/methods , Airway Management/standards , Cough/therapy , Environmental Monitoring/methods , Humans , Intubation, Intratracheal/methods , Operating Rooms/methods , Personal Protective Equipment/standards , Prospective Studies
9.
Anaesthesia ; 76(2): 174-181, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33022093

ABSTRACT

The potential aerosolised transmission of severe acute respiratory syndrome coronavirus-2 is of global concern. Airborne precaution personal protective equipment and preventative measures are universally mandated for medical procedures deemed to be aerosol generating. The implementation of these measures is having a huge impact on healthcare provision. There is currently a lack of quantitative evidence on the number and size of airborne particles produced during aerosol-generating procedures to inform risk assessments. To address this evidence gap, we conducted real-time, high-resolution environmental monitoring in ultraclean ventilation operating theatres during tracheal intubation and extubation sequences. Continuous sampling with an optical particle sizer allowed characterisation of aerosol generation within the zone between the patient and anaesthetist. Aerosol monitoring showed a very low background particle count (0.4 particles.l-1 ) allowing resolution of transient increases in airborne particles associated with airway management. As a positive reference control, we quantitated the aerosol produced in the same setting by a volitional cough (average concentration, 732 (418) particles.l-1 , n = 38). Tracheal intubation including facemask ventilation produced very low quantities of aerosolised particles (average concentration, 1.4 (1.4) particles.l-1 , n = 14, p < 0.0001 vs. cough). Tracheal extubation, particularly when the patient coughed, produced a detectable aerosol (21 (18) l-1 , n = 10) which was 15-fold greater than intubation (p = 0.0004) but 35-fold less than a volitional cough (p < 0.0001). The study does not support the designation of elective tracheal intubation as an aerosol-generating procedure. Extubation generates more detectable aerosol than intubation but falls below the current criterion for designation as a high-risk aerosol-generating procedure. These novel findings from real-time aerosol detection in a routine healthcare setting provide a quantitative methodology for risk assessment that can be extended to other airway management techniques and clinical settings. They also indicate the need for reappraisal of what constitutes an aerosol-generating procedure and the associated precautions for routine anaesthetic airway management.


Subject(s)
Aerosols , Airway Extubation , COVID-19/transmission , Intubation, Intratracheal , Airway Management , Anesthesia , Anesthetists , Cough , Environmental Monitoring , Humans , Operating Rooms , Particle Size , Patients , Personal Protective Equipment , Prospective Studies , Respiration, Artificial , SARS-CoV-2 , Ventilation
11.
J Phys Chem B ; 124(28): 6024-6036, 2020 07 16.
Article in English | MEDLINE | ID: mdl-32569464

ABSTRACT

The evaporation of liquid solution droplets and solute crystallization can be highly complex and is an important problem, particularly in spray drying where powdered products are produced from sprayed liquid droplets, such as in the food or pharmaceutical industries. In this work, we study the relationship between the evaporation rates of single levitated NaNO3 droplets under varying environmental conditions and the propensity for nucleation of NaNO3 crystals. We use a combination of an electrodynamic balance to study single-droplet evaporation kinetics, SEM imaging of dried particles, and modeling of the internal solute distribution inside a drying droplet. We show that the aqueous NaNO3 droplets exhibit broad distributions in the time that crystal nucleation is observed, droplet to droplet. The distribution of nucleation time is dependent upon environmental conditions such as the drying temperature, relative humidity (RH), and solute concentration. Even when evaporating in 0% RH, some droplets do not nucleate crystals in the time taken for all water to evaporate and dry to form an amorphous particle. We believe that this interplay between crystalline or amorphous particle formation is a result of the viscosity of aqueous NaNO3 solutions, which rises by several orders of magnitude as the concentration increases. We show that for droplets with an initial radius of ∼25 µm the propensity for aqueous NaNO3 droplets to nucleate crystals upon drying increases with a decreasing RH and increases with an increasing temperature in the range 278-306 K. This work demonstrates the importance of the drying kinetics on the propensity of evaporating droplets to nucleate crystals.

12.
Ann R Coll Surg Engl ; 101(6): 405-410, 2019 Jul.
Article in English | MEDLINE | ID: mdl-31155889

ABSTRACT

INTRODUCTION: The aims of this study were to report the presenting characteristics and identify how best to distinguish bone and soft-tissue infections that mimic sarcomas. MATERIALS AND METHODS: A total of 238 (211 osteomyelitis and 27 soft-tissue infections) patients referred to a tertiary sarcoma multidisciplinary team with suspected sarcoma who were ultimately diagnosed with a bone or soft tissue infection were included. Data from a prospectively collated database was analysed retrospectively. RESULTS: Of all possible bone and soft-tissue sarcoma referrals, a diagnosis of infection was made in 2.1% and 0.7%, respectively. Median age was 18 years in the osteomyelitis group and 46 years in the soft-tissue infection group. In the osteomyelitis group, the most common presenting features were pain (85.8%) and swelling (32.7%). In the soft-tissue infection group, the most common clinical features were swelling (96.3%) and pain (70.4%). Those in the soft-tissue group were more likely to have raised inflammatory markers. Radiological investigations were unable to discern between tumour or infection in 59.7% of osteomyelitis and 81.5% of soft-tissue infection cases. No organism was identified in 64.9% of those who had a percutaneous biopsy culture. CONCLUSIONS: This study has highlighted that infection is frequently clinically indistinguishable from sarcoma and remains a principle non-neoplastic differential diagnosis. When patients are investigated for suspected sarcoma, infections can be missed due to falsely negative radiological investigations and percutaneous biopsy. As no single clinical, biochemical or radiological feature or investigation can be relied upon for diagnosis, clinicians should have a low threshold for tissue biopsy and discussion in a sarcoma multidisciplinary team meeting.


Subject(s)
Bone Neoplasms/diagnosis , Interdisciplinary Communication , Osteomyelitis/diagnosis , Patient Care Team , Sarcoma/diagnosis , Soft Tissue Infections/diagnosis , Soft Tissue Neoplasms/diagnosis , Biopsy , Bone Neoplasms/pathology , Bone and Bones/pathology , Diagnosis, Differential , Female , Humans , Male , Middle Aged , Osteomyelitis/pathology , Retrospective Studies , Sarcoma/pathology , Soft Tissue Infections/pathology , Soft Tissue Neoplasms/pathology
13.
Phys Chem Chem Phys ; 21(19): 9709-9719, 2019 May 15.
Article in English | MEDLINE | ID: mdl-31025989

ABSTRACT

The simultaneous evaporation and condensation of multiple volatile components from multicomponent aerosol droplets leads to changes in droplet size, composition and temperature. Measurements and models that capture and predict these dynamic aerosol processes are key to understanding aerosol microphysics in a broad range of contexts. We report measurements of the evaporation kinetics of droplets (initially ∼25 µm radius) formed from mixtures of ethanol and water levitated within a electrodynamic balance over timescales spanning 500 ms to 6 s. Measurements of evaporation into a gas phase of varied relative humidity and temperature are shown to compare well with predictions from a numerical model. We show that water condensation from the gas phase can occur concurrently with ethanol evaporation from aqueous-ethanol droplets. Indeed, water can condense so rapidly during the evaporation of a pure ethanol droplet in a humid environment, driven by the evaporative cooling the droplet experiences, that the droplet becomes pure water within 0.4 s.

14.
Clin Rheumatol ; 38(8): 2083-2088, 2019 Aug.
Article in English | MEDLINE | ID: mdl-30919146

ABSTRACT

OBJECTIVE: To characterize rheumatologists' perspectives on evolving trends of reactive arthritis (ReA). METHODS: After ethics approval, 548 members of the Canadian Rheumatology Association were surveyed with 37 questions covering their demographic information, subspecialty, level of experience, practice setting and opinions on prevalence, treatment, and causes of ReA. Results were analyzed with descriptive statistics. RESULTS: Ninety-seven responded to the survey (18% response rate); 66 fully completed it. Nearly half of respondents believed that the incidence of ReA is declining and causes of ReA may be changing. Physicians reported that most of the ReA cases in their practices were caused by an unknown organism, sexually transmitted, or gastrointestinal infection. Full triad ReA increased the chance of recurrence according to their impressions. Common investigations in ReA included inflammatory markers, HLA-B27, chlamydia and gonorrhea testing, stool cultures, synovial fluid analyses, SI joint imaging. ReA treatment included NSAIDs, intra-articular corticosteroid injections, and DMARDs. Two-thirds said they used TNF alpha inhibitors in chronic ReA occasionally or more frequently. CONCLUSION: ReA may be decreasing in frequency and severity in Canada. Changes could be due to less food borne illness, cleaner water, or more rapid treatment of sexually transmitted infections. The cause is often unknown in clinical practice.Key Points• Reactive arthritis (ReA) is likely decreasing in prevalence and severity.• Patients with classic trial of arthritis, urethritis, and conjunctivitis are more likely to have recurrent and/or chronic ReA.• The causal organisms are often not detected and seem to be changing over time.


Subject(s)
Arthritis, Reactive/epidemiology , Arthritis, Reactive/therapy , Rheumatology/trends , Adrenal Cortex Hormones/therapeutic use , Anti-Inflammatory Agents, Non-Steroidal/therapeutic use , Antirheumatic Agents/therapeutic use , Arthritis, Reactive/diagnosis , Canada/epidemiology , Female , Gastrointestinal Diseases/complications , HLA-B27 Antigen/analysis , Humans , Infections/complications , Inflammation , Male , Physicians , Practice Patterns, Physicians' , Prohibitins , Sexually Transmitted Diseases/complications , Societies, Medical
15.
J Phys Chem B ; 123(1): 266-276, 2019 01 10.
Article in English | MEDLINE | ID: mdl-30550715

ABSTRACT

Drying and crystallization of solution droplets is a problem of broad relevance, determining the microstructures of particles formed in spray-drying, the phase of particles delivered by, for example, aerosol formulations for inhalation therapies, and the impact of aerosols on radiative forcing and climate. The ephemeral nature of free droplets, particularly when considering the drying kinetics of droplets with highly volatile constituents, has often precluded the accurate measurement of transient properties such as droplet size and composition, preventing the robust assessment of predictive models of droplet-drying rates, nucleation, and crystallization. Here, we report novel measurements of the drying kinetics of individual aqueous sodium chloride solution droplets using an electrodynamic balance to isolate and trap single aerosol droplets (radius ≈ 25 µm). The initial solution droplet size and composition are shown to be highly reproducible in terms of drying rate and crystallization time when examined over hundreds of identical evaporating droplets. We introduce a numerical model that determines the concentration gradient across the radial profile of the droplet as it dries, considering both the surface recession because of evaporation and the diffusion of components within the droplet. Drying-induced crystallization is shown to be fully determined for this system, with nucleation and instantaneous crystallization occurring once a critical supersaturation level of 2.04 ± 0.02 is achieved at the surface of the evaporating droplet. This phenomenological model provides a consistent account of the timescale and surface concentration of free-droplet crystallization on drying for the different drying conditions studied, a necessary step in progress toward achieving control over rates of crystallization and the competitive formation of amorphous particles.

16.
J Phys Chem A ; 119(22): 5701-13, 2015 Jun 04.
Article in English | MEDLINE | ID: mdl-25989469

ABSTRACT

We present measurements of the evolving extinction cross sections of individual aerosol particles (spanning 700-2500 nm in radius) during the evaporation of volatile components or hygroscopic growth using a combination of a single particle trap formed from a Bessel light beam and cavity ring-down spectroscopy. For single component organic aerosol droplets of 1,2,6-hexanetriol, polyethylene glycol 400, and glycerol, the slow evaporation of the organic component (over time scales of 1000 to 10,000 s) leads to a time-varying size and extinction cross section that can be used to estimate the refractive index of the droplet. Measurements on binary aqueous-inorganic aerosol droplets containing one of the inorganic solutes ammonium bisulfate, ammonium sulfate, sodium nitrate, or sodium chloride (over time scales of 1000 to 15,000 s) under conditions of changing relative humidity show that extinction cross-section measurements are consistent with expectations from accepted models for the variation in droplet refractive index with hygroscopic growth. In addition, we use these systems to establish an experimental protocol for future single particle extinction measurements. The advantages of mapping out the evolving light extinction cross-section of an individual particle over extended time frames accompanied by hygroscopic cycling or component evaporation are discussed.

17.
J Phys Chem A ; 119(18): 4177-90, 2015 May 07.
Article in English | MEDLINE | ID: mdl-25879138

ABSTRACT

Direct measurements of the phase separation relative humidity (RH) and morphology of aerosol particles consisting of liquid organic and aqueous inorganic domains are presented. Single droplets of mixed phase composition are captured in a gradient force optical trap, and the evolving size, refractive index (RI), and morphology are characterized by cavity-enhanced Raman spectroscopy. Starting at a RH above the phase separation RH, the trapped particle is dried to lower RH and the transition to a phase-separated structure is inferred from distinct changes in the spectroscopic fingerprint. In particular, the phase separation RHs of droplets composed of aqueous solutions of polyethylene glycol (PEG-400)/ammonium sulfate and a mixture of C6-diacids/ammonium sulfate are probed, inferring the RH from the RI of the droplet immediately prior to phase separation. The observed phase separation RHs occur at RH marginally higher (at most 4%) than reported in previous measurements made from studies of particles deposited on hydrophobic surfaces by brightfield imaging. Clear evidence for the formation of phase-separated droplets of core-shell morphology is observed, although partially engulfed structures can also be inferred to form. Transitions between the different spectroscopic signatures of phase separation suggest that fluctuations in morphology can occur. For droplets that are repeatedly cycled through the phase separation RH, the water activity at phase separation is found to be remarkably reproducible (within ±0.0013) and is the same for the 1-phase to 2-phase transition and the 2-phase to 1-phase transition. By contrast, larger variation between the water activities at phase separation is observed for different droplets (typically ±0.02).

18.
Phys Chem Chem Phys ; 16(7): 3162-72, 2014 Feb 21.
Article in English | MEDLINE | ID: mdl-24407220

ABSTRACT

We present a new approach to study the equilibrium gas-particle partitioning of volatile and semi-volatile organic components in aqueous aerosol, deriving a correlational analysis method that examines and interprets simultaneous and correlated fluctuations in particle size and composition. From this approach, changes in particle size driven by organic component evaporation can be clearly resolved from size changes driven by hygroscopicity and fluctuations in environmental conditions. The approach is used to interpret measurements of the evaporation of semi-volatile organic components from binary aqueous/organic aerosol and the hygroscopic growth of involatile inorganic aerosol. The measurements have been made by the aerosol optical tweezers technique, which allows the simultaneous retrieval of particle size and refractive index with high accuracy. We suggest that this approach will be particularly valuable for investigating the thermodynamic behaviour of mixed component aqueous aerosol and will allow the accurate derivation of solution phase equilibrium properties that are prone to large uncertainties when measurements are made simply of the change in particle size with gas phase relative humidity.

19.
J Phys Chem A ; 116(35): 8873-84, 2012 Sep 06.
Article in English | MEDLINE | ID: mdl-22867108

ABSTRACT

The binary coalescence of aqueous droplets has been observed in a single-beam gradient-force optical trap. By measuring the time-dependent intensity for elastic scattering of light from the trapping laser, the dynamics of binary coalescence have been examined and the time scale for equilibration of a composite droplet to ambient conditions has been determined. These data are required for modeling the agglomeration of aqueous droplets in dense sprays and atmospheric aerosol. Elastic-light scattering from optically trapped particles has not been used previously to study the time-resolved dynamics of mixing. It is shown to offer a unique opportunity to characterize the binary coalescence of aqueous droplets with radii from 1 to 6 µm. The study of this size regime, which cannot be achieved by conventional imaging methods, is critical for understanding the interactions of droplets in the environment of dense sprays.


Subject(s)
Microtechnology/methods , Optical Tweezers , Water/chemistry , Aerosols , Hot Temperature , Salts/chemistry
20.
Opt Express ; 18(13): 14238-44, 2010 Jun 21.
Article in English | MEDLINE | ID: mdl-20588558

ABSTRACT

We present evidence that aerosol droplets, approximately 1-2microm in diameter, can be optically bound over a 4mm distance within a volume formed by the overlap of the central cores and rings of two counterpropagating Bessel beams. The sizes of the individual polydisperse aerosol particles can be estimated from the angular variation of the elastic light scattering. Scattered light from the two orthogonally polarized trapping beams and from a Gaussian probe beam of different wavelength can be used to provide independent estimations of size. The coalescence of two droplets was observed and characterized.


Subject(s)
Aerosols/chemistry , Optical Tweezers , Water/chemistry , Lasers , Nebulizers and Vaporizers , Particle Size , Scattering, Radiation
SELECTION OF CITATIONS
SEARCH DETAIL
...